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Experimental evidence of deviation from mirror reflection for acoustical shock waves
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The reflection of plane waves on a perfectly reflecting surface is a well-known phenomenon in physics. This
particular case of the famous Snell-Descartes laws, also called mirror reflection, is valid only for linear waves.
For nonlinear shock waves, it is known that this law breaks for sufficiently grazing angles. This paper provides
some experimental evidence of this phenomenon for amplitude more than 100 times as small as in previous
measurements in air. This is achieved by means of ultrasonic periodic shock waves in water. For grazing angles
(typically from 0° to 7°) three different patterns exhibiting strong differences with the mirror law can be
observed. The first one is the nonlinear regular reflection for which the incident shock and the reflected one
merge on the rigid surface but the incident and reflected angles are different. The second pattern looks similar
to the Mach reflection in aerodynamics. In this case, three shocks are present: the incident and reflected shocks
merge just above the rigid surface into a third one connected to the rigid surface. In the third pattern, only the
incident shock is visible. These experimental results are successfully compared with a theory through accurate

numerical simulations.
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Mirror reflection is a very fundamental law in physics,
from particles (such as billiard balls) to waves (light, sound,
or tide). It can be viewed as a particular case of the Snell-
Descartes laws. Nevertheless, deviations from mirror reflec-
tion exist. In aerodynamics, Mach [1] was the first scientist
to observe experimentally a discrepancy for strong nonlinear
shocks. Reflection of strong shocks can be divided into regu-
lar and Mach reflections [2]. Regular reflection is a generali-
zation of mirror reflection where the incident and reflected
shocks meet on the reflecting surface, but the reflected angle
is different from the incident one. On the contrary, for the
Mach reflection, the incident and reflected shocks merge
above the surface into a third one, called Mach stem or Mach
shock, connected to the surface. For a Mach reflection, the
reflection pattern looks similar to a “Y” with three straight
shocks (without curvature). The point where the three shocks
meet is called the triple point. This behavior has been well
known in aerodynamics since the experimental works of
Mach and theoretical studies of von Neumann [3]. Regular
reflection is described by the two-shock theory while Mach
reflection is described by the three-shock theory. These theo-
ries are well adapted for strong shocks, but for shock Mach
numbers less than 1.05, the three-shock theory fails to pre-
dict the Mach reflection [4]. Nevertheless, there exist nu-
merical and experimental studies exhibiting this phenom-
enon [5,6]. The main difference on the reflection pattern is
that the stem has a curvature. This regime is called von Neu-
mann reflection and the discrepancy between theoretical re-
sults and experimental/numerical ones is known as the von
Neumann paradox. Numerous studies are devoted to solving
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this point (see the review of Ben Dor [2]). The goal of this
paper is not to explain this paradox but to demonstrate ex-
perimentally and numerically that it occurs in nonlinear
acoustics. Indeed, the framework of the existing studies is
mainly aerodynamics for which the amplitude of the incident
shock is always high. For weak shocks, this paradox has
been shown, theoretically and numerically, to occur whatever
the amplitude, provided the angle is grazing enough [7]. But,
in all the previous studies the shocks are step shocks whereas
in the experiments presented here shocks are periodic saw-
tooth waves. This difference is crucial since periodicity and
shape of shocks are expected to modify the regime of reflec-
tion [8]. In acoustics, extremely weak shock waves do exist,
resulting from the linear dependence of the sound speed in
the instantaneous pressure amplitude p, according to the law

c=cot——, (1)

where p, and 3 are, respectively, the ambient density and the
nonlinear parameter of the medium associated to quadratic
nonlinearities. Equation (1) is valid for any classical fluid
such as air or water [9,10]. This formula remains valid for
the shock speed itself by replacing p by the mean value of
the pressure just before and after the shock. Acoustical shock
waves can be encountered in many situations: thunder, sonic
boom, or ultrasonic devices used in therapy. For each case
the temporal shape of the pressure is never a step shock but
is either an N wave or a periodic sawtooth wave. In this last
case, the shock speed is exactly the linear sound speed c,
because of the antisymmetry of the waveform. The aim of
this paper is to demonstrate experimentally that, for grazing
incidences, reflection of acoustical shock waves strongly dif-
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FIG. 1. Experimental setup. The evolution of the wavefront is
sketched as follows: (1) two symmetrical plane waves are emitted
from the transducers, (2) they meet 60 cm away from the array to
give birth to a wavefield satisfying the reflection condition [see Eq.
(2)], (3) they interact nonlinearly giving birth to a nonlinear reflec-
tion pattern.

fers from the classical mirror theory even if parameter M
—1 (M is the Mach number defined as the ratio between the
shock velocity relative to the media ahead immediately up-
stream of the shock and the speed of sound in the media
immediately upstream of the shock [11]) is here only 2.3
X 1074, two orders of magnitude smaller than previous ex-
periments in air (not less than 0.04 [6,12])

To observe experimentally the reflection of acoustical
shock waves on a perfectly rigid surface, ultrasonic shock
waves in water are used. The experimental setup (Fig. 1) is
composed of an array of 256 piezoelectrical transducers
(central frequency wy/27=1 MHz, total size 80 mm
X 191 mm) radiating a plane wave with an amplitude up to
Po=0.5 MPa. For this amplitude and fundamental freque?cy,

the distance of shock formation for a plane wave L= Bpwozﬁo is

about 30 cm. Due to the limited bandwidth of the transduc-
ers, only tone bursts can be emitted. Shock waves are pro-
duced through the waveform steepening induced by nonlin-
ear propagation. According to classical theory of nonlinear
acoustics, for a plane wave the shocks appear beyond the
shock formation distance z=L. This enables us to obtain
well-formed shocks within the measurement area between
60 cm and 1 m away from the transducers. A broadband
membrane hydrophone is used to record the pressure field.
This hydrophone is calibrated from 1 to 50 MHz. It is very
well adapted to measure shock waves. Moreover, the size of
the probe (0.2 mm large) allows us to measure the quick
spatial variations of the pressure field (the Mach stem mea-
sures about 1 mm—see experimental results). It can be
moved in the three directions of space thanks to three step-
by-step motors. The signal sent by each transducer is deter-
mined by the inverse filter technique.

The inverse filter technique is a linear technique of com-
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plex wavefield synthesis [13]. It is based on the knowledge
of the propagation operator between a set of acoustical
sources (the transducers) and a set of control points. Here,
the acoustical sources are the different transducers of the
array and the set of control points is chosen as a line of 67
points evenly spaced along 10 cm in the transverse x direc-
tion, located 60 cm away from the transducers (=2L). First,
the propagation operator is experimentally recorded and then
numerically inverted. This inversion is finally used to com-
pute the signal to be sent by each transducer in order to
synthesize the desired pattern. This is technically possible
thanks to programmable amplifiers driving individual trans-
ducers. However, in water, a perfectly rigid surface cannot be
realized because its density is comparable to any other metal
(even the gold density is only 19.6 times the water one). To
overcome this impossibility to have a perfectly rigid surface,
we rely on the mathematical equivalence between rigid re-
flection and symmetry conditions, both expressed by

P

=0. 2
| 2)

Indeed, this equivalence [Eq. (2)] is fundamental for perfect
reflection, for which any physical source has its virtual coun-
terpart image, hence the name of mirror reflection taken from
optics. In our experiment, that symmetry condition is per-
fectly achievable through the inverse filter technique. Indeed,
the pattern along the control line (x=0) is imposed to be two
half-plane waves, symmetrical about the propagation axis Oz
(Fig. 1) with a prescribed grazing angle 6 (defined as the
angle between the wavefront and the normal to the reflecting
surface). Thus, the distance where the pattern is imposed is
thus the beginning of the reflection. Indeed, before this dis-
tance, the field is more or less two plane waves totally dis-
connected as sketched in Fig. 1. However, as the inverse
filter technique is linear, at this stage it is only possible to
deal with the mirror reflection of linear acoustical waves
(without shock waves). Experimentally, we check that the
linear field satisfies the linear Snell-Descartes theory for any
incident angle (not shown here). Then, the same signals are
sent but with a high amplitude, so that nonlinear effects take
place during the propagation according to Eq. (1) and shock
waves appear. As nonlinear effects are locally small (a rela-
tive perturbation of less than 107%), the main features of the
linear pattern, and especially the symmetry condition and the
fixed incidence angle, remain almost up to the control line
where the two half-plane waves begin to interact. This en-
ables us to perform an experimental measurement of nonlin-
ear acoustical shock wave grazing reflection. Note that mea-
surements of nonlinear acoustical wave focusing present
many analogies with our experiment [7]. Indeed, focusing
can be viewed as a reflection across an axis of symmetry.
Moreover earlier experiments have shown the existence of
Mach reflection for focusing [12]. Nevertheless, these studies
deal with either strong shock or step shocks since amplitude
and waveform are crucial parameters used to investigate ac-
curately this phenomenon. The modeling used in this paper,
Refs. [7,14,15,8], relies on the paraxial approximation of the
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FIG. 2. Pressure field (in Pa) for #=7°: Experimental result.
nonlinear wave equation, which is known as the Khokhlov-
Zabolotskaya (KZ) equation [16]

PP PP IP?
=5+ 5.
azor x>  or

3)

The dimensionless variables are defined as follows: P
=p/p, for the pressure, Z=z/L for the longitudinal variable,
X =x\; wSL/ 208 for the transverse variable, and
=wy(t—z/cy) for the retarded time. Equation (3) takes into
account the interaction between transverse diffraction and
nonlinear effects (the two terms on the right-hand side) as the
wave propagates (the left-hand side). This equation is valid
as long as propagation remains located along the propagation
axis (typically it is valid up to 15°, while here grazing angles
will not be larger than 7°). Far away from the symmetry axis,
the incident shock wave is assumed to be perfectly plane and
therefore satisfies Eq. (3) without the diffraction term. It can
be written [8]

P(X,Z,7) = G(Z)F(7+ aX + d*Z), (4)

where F is the waveform of the incoming signal and G its
amplitude (depending on F). The phase of the signal 7+aX
+a’Z is the one of a plane wave with grazing angle, which
introduces the dimensionless critical parameter a:

sin(6)\poc )
V28py

It compares the effects of diffraction associated to the graz-
ing angle, to nonlinearities [8]. On the rigid surface, the
symmetry/reflection condition is given by Eq. (2). To nu-
merically solve the KZ equation and its associated boundary
equations, a modified version [8] of an existing algorithm
[17,18] has been used. The waveform F of the incoming
signal is extracted from the experimental data on the control
line (at this distance there is almost no reflection yet). This
experimental signal is used as an input to (1) calculate the a
parameter, (2) compute the nonlinear amplitude evolution
G(Z), and finally (3) solve the KZ equation for comparisons
with measurements.

Figures 2-5 show the spatiotemporal pressure field. The x
axis is the delayed time 7 and the y axis is the distance from
the symmetry axis (y=0 is the location of the symmetry axis
or equivalently the location of the reflector). For each figure,
the color of a pixel represents the pressure amplitude of the
field at point x and time 7 and the color bar indicates the
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FIG. 3. Pressure field (in Pa) for #=5°: (a) Experimental result,
(b) nonlinear simulation, (c) linear simulation.

pressure levels in pascals. In order to visualize the local phe-
nomenon of nonlinear reflection better, the figures are dis-
played with a shorter temporal window than the period of the
signal. Thus, the periodicity of the acoustical signals is not
visible in the figures, but this is just an artifact of visualiza-
tion since the signals are periodic. The measurements are
performed perpendicularly to the symmetry axis along a
2 cm segment located 9 cm behind the control line, where
the reflection begins. The spatial sampling is 0.2 mm (which
is the size of the active part of the hydrophone). The tempo-
ral sampling is 1 GHz. The figures are displayed, respec-
tively, for four different incidence angles, namely, 6=1°, 3°,
5°, and 7°. The experimental results (top of each figure) are
systematically compared (except for the case 6=7°) to the
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FIG. 4. Pressure field (in Pa) for #=3°: (a) Experimental result,
(b) nonlinear simulation, (c) linear simulation.

056602-3



MARCHIANO et al.

10

(c)
\ Fi
-0.2 -0.1 0 0.1 0.2

Time [ps]

FIG. 5. Pressure field (in Pa) for 6=1°: (a) Experimental result,
(b) nonlinear simulation, (c) linear simulation.

numerical simulation of Eq. (3) (middle figure). Also, to bet-
ter visualize the deviation from mirror reflection, a numerical
simulation in the linear regime is also included (bottom fig-
ure), with the nonlinear term of Eq. (3) omitted.

For the angle #=7° (Fig. 2), though we obviously have an
incident shock wave whose amplitude is about 0.5 MPa (vis-
ible as the straight line separating the white and the gray
areas), we nevertheless observe a classical mirror reflection:
the incident angle is equal to the reflected one (also a shock
wave of about the same amplitude, separating the gray and
black areas).

For the angle §=5° (Fig. 3), the reflection is still regular
with two shocks connected on the symmetry axis x=0. The
value of the parameter a [see Eq. (5)] is 1.81. This value is in
agreement with theoretical results which predict that regular
reflection exists while a is greater than \5. However, the
nonlinear effects [Figs. 3(a) and 3(b)] are now clearly visible
as the reflected shock angle 6=c,At/Ax=4° is smaller than
the incident one. This value is in good agreement with von
Neumann two-shock theory. The deviation from mirror re-
flection is also exemplified by comparisons with linear simu-
lation [Fig. 3(c)]. In that last picture the contact point arrives
later because nonlinear effects that accelerate shock propa-
gation according to Eq. (1) do not occur.

The situation turns out dramatically different for the
smaller angle 6=3° [Figs. 4(a) and 4(b)]. The regular two-
shock pattern is completely broken. The value of a is 0.91.
This value is in agreement with theoretical predictions stat-
ing that regular reflection cannot exist for values of a less
than 2. This behavior is analogous to the von Neumann
reflection phenomenon known in aerodynamics for moderate
step shocks. The incident and reflected shocks do not merge
on the rigid/symmetry line. Instead of the classical two-
shock pattern, the experimental observation shows a situa-
tion with three different shocks. The Mach stem is not a
straight line but has a smooth and regular slope with maxi-
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mum curvature near the triple point and, consequently, the
contact point of the Mach stem arrives sooner (about 0.1 us).
There is an excellent agreement between the experimental
results and the nonlinear simulation. The size of the Mach
stem (about 0.75 mm) and the curvature of the Mach and
reflected shocks are comparable with the experimental ones.
Also, the pressure amplitude in all points of the field is well
reproduced with the same local amplification right behind
the Mach stem (with a factor 2.5 versus 2 for the linear case).
That amplification implies the Mach stem propagates faster
and hence creates a curvature. At the opposite, the linear
simulation [Fig. 4(c)] totally misses all the above features.
This undoubtedly demonstrates that diffraction cannot be the
only physical mechanism responsible for this special reflec-
tion pattern, which is intrinsically coupled to nonlinearities.
Note that, contrary to the usual nonlinear propagation, this is
an extremely local phenomenon (subwavelength compared
to the fundamental wavelength, here 1.5 mm).

If the grazing angle is zero, then there is no reflection at
all; the incident wave remains unaffected. Therefore, another
transition has necessarily to occur to match the von Neu-
mann reflection described above (with three shocks) to the
perfectly grazing case with no reflection at all (with only one
shock). Indeed, for extremely small deviation from perfect
grazing the perturbation of the incident wave has to be ex-
tremely small also and therefore cannot be a shock wave. So,
for small values of the grazing angle, we expect a pattern
with one shock. This is exactly what is observed experimen-
tally for #=1° [Figs. 5(a) and 5(b)]. This regime has never
been observed to our knowledge. It is different from the von
Neumann reflection since no reflected shock is visible. It is
similar to a weak von Neumann reflection. The value of a
=0.36 supports again the theory [8] which predicts this new
regime for a<0.4. The effects on the incident shock for the
von Neumann reflection and the weak von Neumann reflec-
tion are similar. They are essentially characterized by the
curvature near the reflector. The essential difference lies in
the reflected shock whose amplitude decreases progressively
with the grazing angle up to disappearance for the weak von
Neumann case. Even if this regime corresponds to an ex-
tremely weak reflection, it is nevertheless very different from
the linear reflection [Fig. 5(c)]. This may sound paradoxical
but it is not, as pointed out by von Neumann himself in his
seminal paper [3]. Indeed, he outlined that the linear mirror
reflection is singular in the sense that it does not allow a
continuous transition between reflection regime and perfect
grazing (for instance, the pressure at the surface will double
for any grazing angle except the zero value). The transition
from grazing angle to zero angle follows this scheme: first
the classical mirror reflection (two shocks, observed here for
0=17°) which can be analyzed by linear theory even for non-
linear shock waves, second the regular reflection (two
shocks, observed here for 6=5°), third the von Neumann
reflection (three shocks, observed here for 6=3°), and
fourthly the weak von Neumann reflection (one shock, ob-
served here for 6=1°). These last three patterns are observed
for acoustical and weak von Neumann waves. To our point of
view, these observations open interesting outlooks to better
understand the acoustical paradox of von Neumann.
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